
Indice

1Introduction ...
2Script Programmer ..

14Language ...
14Variables ..
14Arithmetic operators ...
14Program structure ..
14Flow control functions ..
14Interface functions ...
14String functions ...
14Conversion functions ...
14Mathematical and logic functions ...
14Timming functions ...
24Sources-Destinations ..
24read_io sources ..
24write_io destinations ...
24read_str sources ...
24write_str destinations ...
24Read/Write Input/Output channels ..
24Channels memory ...
24Read direct Modbus query value ..
24Real time clock reading ..
24Non-volatile memory access ..
24Read GSM/GPRS/MW state and MW link configuration ...
24Receiving/Sending SMS. Phonebook. ..
24Sending/Receiving messages to the Script Programmer ("Traces") ..
24Serial port in text mode ..
24Serial port in binary mode ...
24Creating historical records ...
24Force sending reports ..
24Historical records memory access ...
24Satellite Modem ...
24FTP Client ..
24CRC and checksums calculation ..
24MQTT Link state and publish (GRD-MQ and cLAN-MQ) ...
24MQTT subscription messages reception (GRD-MQ and cLAN-MQ) ...

Script Programming
Description
The GRD/cLAN with script programming support allows you to run user written scripts on the device,
making it more powerful and flexible.

The GRD/cLAN will continue working normally while the script is running.

Script Features
• Math operations
• Logic operations
• Timing functions
• Physical and Modbus channels readings
• Digital outputs control
• SMS sending and receiving (GRD only)
• Serial port data parsing
• Sending and receiving data using external Satellite modem

2017-06-14

GRD - Script Programming Introduction

1 / 32

Introduction

This software is used to write, compile and download the user' scripts to the GRD/cLAN. Before using it
please check that the GRDconfig software is able to talk to the device.

Software description

Connecting to the device

There are two ways to connect the GRDconfig to the device. Locally (By USB on the GRD, by
LAN/Ethernet on the cLAN) and remotely (through the Middleware)

Connecting to the device - GRD by USB

The USB driver must be installed on order to do it using the USB port.

Open the "Project"menu, option "Properties" and choose "GRD" on the "Device" tab.

GRD - Script Programming Script Programmer

2 / 32

The choose the "Communication" tab, choose USB and press accept

Then go to the “Transfer” menu and click “Connect” .

GRD - Script Programming Script Programmer

3 / 32

Connecting to the device - cLAN by LAN/Ethernet

The cLAN must be connected to the same network of your computer. Check that it has a valid IP address
as described later on these manual.

Open then "Project" menu, opion "Properties", and choose "cLAN" on the "Device" tab

Choose "LAN/Ethernet" on the "Communication" tab and press Accept

Go to the “Transfer” menu and click “Connect”

GRD - Script Programming Script Programmer

4 / 32

After doing it you will see a list with the cLANs connected to your network. Choose the one you want to
configure.

You will be asked to type a password. It's the same password the cLAN will use to establish a connection
to the MW.

Connecting to the device - cLAN-XF / GRD-XF remotely (XF models only)

The device must be connected to the MW to configure it remotely.

The Middleware version must be 4.2.0 or higher to support scripts download/upload.

If you are going to use the Middleware you must set up the MW's IP address/URL, port, user and
password for remote configuration. To do it, go to the "Project" menu, then to "Properties", select the
"Communication" tab and choose "Middleware" on the "Method" combo box.

GRD - Script Programming Script Programmer

5 / 32

Then click on the connect button at any time.

Then you will have to click on the device that you want to configure.

Script Versions 1 and 2

GRD - Script Programming Script Programmer

6 / 32

In the menu "Project", option "Properties", tab "Script" you can chose between script versions 1 and
2.

GRD-2G and cLAN V1.x use version 1. GRD-3G y cLAN V2.0+ use version 2.

Version 2 doubles the variables quantity, it allows upper and lower case variables. Version 1 only allows
lower case variables.

The choosen version will be use in two situations. While verifyng the script or before sending it to the
device.

If the script version is not compatible with the device you will see this error message.

Upload/Download Script

Once the link is established you can send or received scripts. Before downloading a new script it will be
checked.

Editing scripts

To write a script you must type the code on the edition text area. Contextual help will be displayed on
some functions. .

GRD - Script Programming Script Programmer

7 / 32

To check if there are errors on the code you can press the “Verify” anytime.

If the software detects an error it will mark it with a red square and will show you the line on the bottom

On this next example we can see a missing ";"

GRD - Script Programming Script Programmer

8 / 32

If no errors are found you will see the next pop-up window.

Once the script is verified you can send it to GRD by clicking on “Download to device”.

GRD - Script Programming Script Programmer

9 / 32

Script debugging

The Script Programmer has two methods that will help you to debug your application. The GRD's
firmware must be 5.2.0 or higher to support these options.

Variable watch

This tool will let you check the numeric and string values. You will also be able to edit these values in run
time.

Once the GRD is connected to the "Project" menu, "Watch variables" option and then select
"Numeric" or "String"

GRD - Script Programming Script Programmer

10 / 32

Trace Window

This tool will display messages sent from the script in a pop-up window. You will also be able to send
texts to the script to simulate different working conditions.

Once the GRD is connected to the "Project" menu, "Trace Window "option

GRD - Script Programming Script Programmer

11 / 32

Script Compression

The script maximum size supported by the GRD is 20000 characters.

If this space is not enough for your application you can compress the script before sending it to the GRD.
This will remove all your comments on the code and the extra spaces and tabs.

If you want to keep these comments you have to save a copy of the script in your computer.

To enable the compression go to the "Project" menu, "Properties" option, "Transfer" tab and check
the "Compressed Transfer" check box.

GRD - Script Programming Script Programmer

12 / 32

2020-11-25

GRD - Script Programming Script Programmer

13 / 32

Introduction
The Exemys script programming language runs in a loop. This means that it will run until the last program
line and start from the beginning again.

Loop functions are not avaible. So, the program flow can't be stopped or looped. It runs like a ladder
program in a PLC, but its syntaxis is similar to C language.

We suggest not only to read this manual but to read the examples to better understand how to write a
script. You can download the examples from here www.exemys.com/GRDscriptsExamples

Script using the SMS feature will only work on the GRD.

Script Versions 1 and 2
There are two version of the script. Version 2 doubles the variables quantity, it allows upper and lower
case variables. Version 1 only allows lower case variables.

GRD-2G and cLAN V1.x use version 1

GRD-3G and cLAN V2.0+ use version 2

All GRD-MQ and cLAN-MQ use version 2.

Variables
There are two variable types. Numeric variables and String variables.

It's not necesary to define variables.

In Version 1 there are 21 numeric variables, from “a” to “u” . And there are 5 string variables from “v”
to “z” .

In Version 2 there are 42 numeric variables, from “a” to “u” and from “A” to “U” . And there are 10
string variables from “v” to “z” and from “V” to “Z” .

String variable's maximum length is 100 characters.

Numeric variables are signed integer type, and their value range goes from −2,147,483,648 to
2,147,483,647. If a math operation gives a result with decimals, it will be truncated to the integer part.

Initial value es 0 for numeric variables and empty for strings.

Numeric variables can be mapped into GRD's I/O channels to send reports or create historical records
based on its values.

Assigning a value to a variable:

Numeric variables:

 a = 652;

String variables :

 v = 'Hello world'

String concatenation:

To concatenate two or more strings use the comma operator.

GRD - Script Programming Timming functions

14 / 32

Example:

 a = 20;

 u = 'Temperature ';

 v = ' °F';

 w = u, a, v;

The result will be 'Temperature 20 °F'

Another way to do the same is:

 w = 'Temperature ', a,' °F';

String concatenation can only be done on string variables value assignment and write_str function

Assigning ASCII values to a string variable:

To assign ASCII values use the $ operator. After the operator type the ASCII value on decimal notation.
ACII value zero is not allowed.

Example:

 z = 'Hello world',$13,$10;

ASCII values assignment can only be done on string variables value assignment and write_str function

Arithmetic operators

Operator Description
= Assignment
^ Exponential
| Bitwise Or
& Bitwise And
+ Addition
- Subtraccion
* Multiplication
/ Division
% Modulo

Example:

a = 130;
b = a+5;

Result: b variable value is 135.

Program structure

GRD - Script Programming Timming functions

15 / 32

Al instruction must end with the “;” symbol.

The program runs in a loop. This means that it will run until the last program line and start from the
beginning again.

The script last instruction must be “end;”

 a = a + 1;
 end;

On this example "a" variable will be incremented constantly. Its initial value is 0.

On-line comments:

If you wish to add a comment line you must use the “# “ . On-line comments must also en with the “;”
symbol.

Flow control functions

“start” function

It marks a block that will be executed only once. It must be written at the beginning of the script.

 Syntax:

start
{
...;
...;
};

Example:

 start
 {
 a = 10; #a initial value is 10;
 };
 a = a + 1; #a is incremented by 1 constantly;
 end;

“if-else” function

The script will decide the script execution flow based on condition. If the condition is true the code in the
block next to the "if" instruction will be executed. You can add also a code block that will be executed if
the condition is no true.

The condition operators are the following ones:

Operator Description
= Equals to
! Not equal to

>
Greater
than

< Less than

GRD - Script Programming Timming functions

16 / 32

Syntax:

Single “if” :

 if condition
 {
 ...;
 ...;
 };

A “;” symbol is required to close the block.

"if-else” :

 if condition
 {
 ...;
 ...;
 }
 else
 {
 ...;
 ...;
 };

The“;” is only requiered on the "else" block.

“end” function

This function is used to mark the end of the program. When the interpreter finds this line it will jump to the
first line of the script.

Syntax:

 end;

Interface functions

“read_io” funcion

With read_io you can get values from different sources like I/O channels, the real time clock, etc

The “source” is indicated with a number. Some sources will require an index number to point an address
inside that source.

The result of this function will be loaded in the indicated numeric variable.

Syntax:

read_io source,numeric_variable,index;

Available sources may change depending on the device where you are running the script and the script
version. New sources can be added in the future.
Browse "Sources-Destinations" section for the currently available ones.

“write_io” function

GRD - Script Programming Timming functions

17 / 32

With write_io you can set values in different destinations, like digital output channels, pulse channels,
etc.

The “destination” is indicated with a number. Some destinations will require an index number to point
an address inside that destination.

The value to be written can be a number or a numeric variable.

Syntax:

write_io destination,index,value;

Available destinations may change depending on the device where you are running the script and the
script version. New destinations can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

“read_str” function

With read_str you can get incoming strings from different sources like the serial port or a SMS.

The “source” is indicated with a number.

The result of this function will be loaded in the indicated string and numeric variables. The numeric
variable will contain the string length. If the value is 0 it means that there isn't a new incoming string from
that source.

Syntax:

read_str source,numeric_variable,string_variable;
Available sources may change depending on the device where you are running the script and the script
version. New sources can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

“write_str” function

With write_str you can send strings to different destinations, like an SMS or the serial port. The
“destination” is indicated with a number.

Syntax:

write_str destination,string;.

Available destinations may change depending on the device where you are running the script and the
script version. New destinations can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

The string can be a variable string or a text typed between single quotes. This function support string
concatenation and including ASCII values.

String functions

“is_equal” function

Compares one string variables with a text (variable string or a text typed between single quotes). The

GRD - Script Programming Timming functions

18 / 32

numeric variable will contain the result, 1 if they are equal or 0 if they are different.

Syntax:

is_equal numeric_variable,string_variable,string;
Example:

v='PUMP RUN';
is_equal c,v,'PUMP RUN';
if c=1 {
 #texts are equal;
};

“finish_with” function

Compares the end of one string variables with a text (variable string or a text typed between single
quotes). The numeric variable will contain the result, 1 if they match or 0 if they don't.

Syntax:

finish_with numeric_variable,string_variable,string;
Example:

v='PUMP RUN';
finish_with c,v,'RUN';
if c=1 {
 #The string ends with 'RUN';
};

“begin_with” function

Compares the beginning of one string variables with a text (variable string or a text typed between single
quotes). The numeric variable will contain the result, 1 if they match or 0 if they don't.

Syntax:

begin_with numeric_variable,string_variable,string;
Example:

v='PUMP RUN';
end_with c,v,'RUN';
if c=1 {
 #The string ends with 'RUN';
};

“contains” function

Determines if one string (fixed text or string variable) is contained by a string variable. The numeric
variable will contain the position where the string if found or 0 if its not contained.

Syntax:

contains numeric_variable,string_variable,string;

Example:

v='PUMP RUN';
contains c,v,'MP';

GRD - Script Programming Timming functions

19 / 32

if c>0 {
 #The variable v contains the text 'MP' ;
};

“upper” function

Converts all character is one string variable to uppercase.

Syntax:

upper string_variable;
Example:

v='Turn ON';
upper v;
#v equals 'TURN ON';

“lower” function

Converts all character is one string variable to lowercase.

Syntax:

lower string_variable;
Example:

v='Turn ON';
upper v;
#v equals 'turn on';

“strlen” function

Gets the string length and stores it on a numeric variable.

Syntax:

strlen numeric_variable,string_variable;
Example:

v='PUMP RUN';
strlen c,v;
#c equals 8 ;

“substr” function

Returns part of a string within the same string variable

Syntax:

substr start,end,string_variable;
v='PUMP RUN';
substr 2,3,v;
#v equals 'UMP';

Conversion functions

GRD - Script Programming Timming functions

20 / 32

“point” function

Converts a numeric variable to string and places a decimal point on a fixed position.

Syntax:

point string_variable,numeric_variable,decimals;
Example:

c=123;
point v,c,1;
#v equals '12.3';

“aton” function

Converts number inside a string variable to a numeric variable. It starts at the beginning of the string and
ends where it finds a non-numeric character or reaches the end of the string.

Syntax:

aton numeric_variable,string_variable;
Example:

v='123 RPM';
aton c,v;
#c equals 123;

“day”,”month”,”year”,”hs”,”min”,”sec” and “nday” functions

These functions will convert a time_stamp to day, month, year, hour, minute, seconds or day of the
week.

Current data/time can be read using read_io with source #7.

Syntax:

day day,timestamp;
month mont,timestamp;
year year,timestamp;
hs hour,timestamp;
min minutes,timestamp;
sec seconds,timestamp;
nday dayoftheweek,timestamp;

“nday” function will return the day of the week number starting with Sunday=0s.

Example:

read_io 7,e,0; #Reads current time and date into e;
day f,e;
month g,e;
year h,e;
hs i,e;

GRD - Script Programming Timming functions

21 / 32

min j,e;
sec k,e;
#The current time and date is f/g/h i:j:k;

Mathematical and logic functions

“neg” function

It will invert the value of a numeric variable bitwise.

Syntax:

neg result,initialvalue;
Example:

a=32323; #7E43h
neg b,a;

b equals 4294934972 (FFFF81BC);

“sqtr” function

Calculates the square root of a numeric variable. As numeric values are integers the fractional part will be
truncated. Multiply the number before calculation if you need higher precision.

Syntax:

sqrt result,initialvalue;
Example:

a=225;
sqrt b,a;
#b equals 15;

“scale” function

Scales a number using the two point form of the linear equation.

Syntax:

scale result,initialvalue,x0,x1,y0,y1;
Example: Scale a 4-20mA signal on input AN1 to a number between 0 and 500

read_io 2,a,1; #a = AN1
scale c,a,400,2000,0,500;
#c equals scaled number

Timming functions
This functions will allow you to control the program flow using timers.

“timer” and “check_timer” function

Use "timer" to store on a numeric variable the time you want to wait (in milliseconds)

Use “check_timer” to check if the time has expired or not.

GRD - Script Programming Timming functions

22 / 32

Syntax:

timer numeric_variable,time_in_milliseconds;
...
check_timer numeric_variable
{
 ...
 ...
};

Once the time has expired the code inside the check_timer block will be executed. This code will be
executed on every program loop until the timer is loaded again. Typically you will be reloaded the timer
inside the check_timer block.

Note: The timing functions are no recommend on applications where precision timing is required
because timers can have some dispersion.

2020-11-25

GRD - Script Programming Timming functions

23 / 32

Introduction
Functions read_io, write_io, read_str and write_str can be used to gain access to additional features. On
this section the different sources and destinations per function are listed. Then they are grouped by
feature.

Sources/destinations list

“read_io” sources

Source Description Index GRD-XF-
2G cLAN-XF V1 GRD-XF-3G cLAN-XF

V2 GRD-MQ cLAN-MQ

0 Digital input channel (Ix) 1 to 100 Yes Yes Yes Yes Yes Yes
1 Digital output channel (Ox) 1 to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANx) 1 to 100 Yes Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1 to 100 Yes Yes Yes Yes Yes Yes

23
Pulse input channel mapped to Modbus query
reading Float 32 number. Returns the integer part
of the value times 1000 (PIx)

1 to 100 5.1.2 Yes Yes Yes Yes Yes

36

Pulse input channel mapped to Modbus query
reading Float 32 number with bytes swapped.
Returns the integer part of the value times 1000
(PIx)

1 to 100 5.2.0 Yes Yes Yes Yes Yes

305 Channels memory 0 - - 1.9 2.8 Yes Yes
7 Current time (seconds since 1/1/2000) 0 Yes Yes Yes Yes Yes Yes
8 Records in historical records memory 0 Yes Yes Yes Yes Yes Yes
9 GSM link state (see table below) 0 Yes - Yes - Yes -
10 GPRS link state (see table below) 0 Yes - Yes - Yes -
11 Middleware link state (see table below) 0 Yes Yes Yes Yes - -i
21 Numbers non-volatile memory (read) 1 a 20 5.1.1 Yes Yes Yes Yes Yes
22 MW link enabled configuration 0 5.2.2 Yes Yes Yes - -

37 Number of bytes stored in serial port buffer (to
delete these bytes use write_io 37) 0 5.2.0 Yes Yes Yes Yes Yes

38 Binary value of one byte of the serial port buffer 1 to 100 5.2.0 Yes Yes Yes Yes Yes
39 SMS pending to be sent 0 5.2.4 Yes Yes Yes Yes -

48 Disable sending historical records to the MW (1
disabled, 0 enabled) 0 5.2.0 Yes Yes Yes Yes Yes

47 FTP client state 0 5.2.2 Yes - Yes - Yes
55 Satellite modem state 0 5.2.2 Yes Yes Yes - -

61 Get historical record memory channel type, use with
write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

62 Get historical record memory timestamp, use with
write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

63 Get historical record memory historical type, use
with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

64 Get historical record memory channel number, use
with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

65 Get historical record memory value, use with
write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

75 UDP socket reception state (1 = ready) 0 - - - 2.2 - Yes
76 UDP socket transmition state (1 = ready) 0 - - - 2.2 - Yes
77 UDP socket binary read. Bytes received 0 - - - 2.2 - Yes
78 UDP socket binary read. Read position 0 a 100 - - - 2.2 - Yes
81 HTTP client. Answer length 0 - - - 2.2 - Yes
82 HTTP client. State 0 - - - 2.2 - Yes
95 SMTP client. State 0 - - - 2.2 - Yes
195 POP client. State 0 - - - 2.2 - Yes
270 Get direct Modbus query value 1 to 100 - - 1.8 - Yes -
271 Get direct Modbus query state 1 to 100 - - 1.8 - Yes -
280 Roamming state (0=no, 1=yes) 0 - - 1.8 - Yes -
1000 MQTT-Messages pending to be read 0 - - - - Yes Yes
1001 MQTT-Broker link state (1=connected) 0 - - - - Yes Yes

“write_io” destinations

Destination Description Index GRD-XF-2G cLAN-XF V1 GRD-XF-3G cLAN-XF V2 GRD-MQ cLAN-MQ
1 Digital output channel (Ox) 1 to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANx, Modbus only) 1 to 100 5.1.3 Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1 to 100 Yes Yes Yes Yes Yes Yes

305 Channels memory 0 - - 1.9 2.8 Yes Yes
7 Set real time clock (seconds since 1/1/2000) 0 - - 1.8 2.6 Yes Yes

56 Create a digital input channel "by change" historical
record 1 to 100 5.2.2 Yes 1.6 Yes Yes Yes

57 Create a digital output channel "by change" historical
record 1 to 100 5.2.2 Yes 1.6 Yes Yes Yes

12 Create an analog input channel "by time" historical
record 1 to 100 Yes Yes Yes Yes Yes Yes

14 Create an analog input channel "by alarm" maximum
value historical record 1 to 100 Yes Yes Yes Yes Yes Yes

15 Create an analog input channel "by alarm" minimum
value historical record 1 to 100 Yes Yes Yes Yes Yes Yes

16 Create an analog input channel "by alarm" normal value
historical record 1 to 100 Yes Yes Yes Yes Yes Yes

13 Create a pulse input channel "by time" historical record 1 to 100 Yes Yes Yes Yes Yes Yes
17 Force a digital input (Ix) channel report 1 to 100 Yes Yes Yes Yes Yes Yes
18 Force a digital output (Ox) channel report 1 to 100 Yes Yes Yes Yes Yes Yes
19 Force an analog input (ANx) channel report 1 to 100 Yes Yes Yes Yes Yes Yes

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

24 / 32

20 Force an pulse input (PIx) channel report 1 to 100 Yes Yes Yes Yes Yes Yes
21 Numbers non-volatile memory (write) 1 a 20 Yes Yes Yes Yes Yes Yes
22 MW link enabled configuration (0 o 1) 0 5.2.2 Yes Yes Yes - -

48 Disable sending historical records to the MW (1
disabled, 0 enabled) 0 5.2.2 Yes Yes Yes Yes Yes

37 Delete N bytes from the serial port buffer (use together
with read_io 37 and read_io 38) 0 5.2.0 Yes Yes Yes Yes Yes

38 Send a byte to the serial port (Binary value) 0 5.2.5 - Yes Yes Yes Yes

60 Read specific register from historical records memory
(use together with read_io 61 to 65) - 5.2.2 Yes Yes Yes Yes Yes

66 Delete the first N registers from the historical records
memory - 5.2.2 Yes Yes Yes Yes Yes

54 Initiate sending historical records using satellite modem 0 5.2.2 Yes Yes Yes - -
32 Satellite. Begin reception check. 0 - - 1.3 2.2 - -

59 Change the multiplier for read_io 23 and 36 (1000 default
value) 0 5.2.5 - Yes Yes Yes Yes

44 Initiate FTP client connection 0 5.2.2 Yes - Yes - Yes
46 Finish FTP client connection 0 5.2.2 Yes - Yes - Yes

77 UDP Client. Send N bytes previously stored on the
UDP buffer 0 - - - 2.2 - Yes

78 UDP Client. Load UDP buffer 0 a 100 - - - 2.2 - Yes
82 HTTP Client. Begin connection check 0 - - - 2.2 - Yes
195 POP Client. Begin connection check 0 - - - 2.2 - Yes

“read_str” sources

Source Description GRD-XF-2G cLAN-XF V1 GRD-XF-3G cLAN-XF V2 GRD-MQ cLAN-MQ
4 SMS text Yes - Yes - Yes -
5 SMS sender's phone number Yes - Yes - Yes -
6 Serial port Yes Yes Yes Yes Yes Yes
32 Satellite. String received from MW's transparent port. - - 1.3 2.2 - -
35 Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes

51 Reads process buffer adding NMEA start, end and checksum
bytes (load process buffer with write_str 50 before using it) 5.2.0 Yes Yes Yes Yes Yes

77 UDP Socket. Get last string received. - - - 2.2 - Yes
81 HTTP Client.. Get last string received. - - - 2.2 - Yes
193 POP client. Get sender's email address. - - - 2.2 - Yes
194 POP client. Get subject - - - 2.2 - Yes
195 POP client. Get body. Load next message in queue. - - - 2.2 - Yes

101 a
108 Phone book names 1 to 8 5.1.3 - Yes - Yes -

111 a
118 Phone book telephone number 1 to 8 5.1.3 - Yes - Yes -

121 a
125 Strings non-volatile memory 1 to 5 (read) 5.2.2 Yes Yes Yes Yes Yes

1000 MQTT. Get first message in queue. - - - - Yes Yes

“write_str” destinations

Destination Description GRD-XF-2G cLAN-XF V1 GRD-XF-3G cLAN-XF V2 GRD-MQ cLAN-MQ

4 SMS text (send order) Yes - Yes - Yes -
5 SMS recipient's phone number Yes - Yes - Yes -
6 Serial port Yes Yes Yes Yes Yes Yes
35 Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes
50 Process buffer (use together with read_str 51) 5.2.0 Yes Yes Yes Yes Yes

121 a 125 Strings non-volatile memory 1 to 5 (write) 5.2.2 Yes Yes Yes Yes Yes
40 Load FTP Client URL 5.2.2 Yes - Yes - Yes
41 Load FTP Client use 5.2.2 Yes - Yes - Yes
42 Load FTP Client password 5.2.2 Yes - Yes - Yes
43 Load FTP Client file name 5.2.2 Yes - Yes - Yes
45 Load FTP file text line and send 5.2.2 Yes - Yes - Yes
75 UDP socket. Initialize socket and set listen port - - - 2.2 - Yes
76 UDP socket. Set remote IP address and port - - - 2.2 - Yes
77 UDP socket. Send string - - - 2.2 - Yes
80 HTTP client. Ser URL and port - - - 2.2 - Yes
84 HTTP client. Set path/file name - - - 2.8 - Yes

81 HTTP client. Set GET query string
(xx=123&yy=456…) - - - 2.2 - Yes

83 HTTP client. Set value to 'data' field on the GET
query string (alternative to write_str 81) - - - 2.2 - Yes

89 SMTP client. Set URL and port - - - 2.2 - Yes
90 SMTP client. Set sender's email address - - - 2.2 - Yes
91 SMTP client. Set user name - - - 2.2 - Yes
92 SMTP client. Set password - - - 2.2 - Yes
93 SMTP client. Set recipient's email address - - - 2.2 - Yes
94 SMTP client. Set subject - - - 2.2 - Yes
95 SMTP client. Set body and begin sending email - - - 2.2 - Yes
189 POP client. Set URL and port - - - 2.2 - Yes
191 POP client. Set user name - - - 2.2 - Yes
192 POP client. Set password - - - 2.2 - Yes
1001 MQTT-Load topic to publish - - - - Yes Yes

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

25 / 32

1002 MQTT-Load payload to publish and begin publishing - - - - Yes Yes

Read/Write Input/Output channels

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

0 Digital input channel (Ix) 1 to 100 Yes Yes Yes Yes Yes Yes
1 Digital output channel (Ox) 1 to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANx) 1 to 100 Yes Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1 to 100 Yes Yes Yes Yes Yes Yes

23
Pulse input channel mapped to Modbus query
reading Float 32 number. Returns the integer part
of the value times 1000 (PIx)

1 to 100 5.1.2 Yes Yes Yes Yes Yes

36

Pulse input channel mapped to Modbus query
reading Float 32 number with bytes swapped.
Returns the integer part of the value times 1000
(PIx)

1 to 100 5.2.0 Yes Yes Yes Yes Yes

write_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

1 Digital output channel (Ox) 1 to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANx, Modbus only) 1 to 100 5.1.3 Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1 to 100 Yes Yes Yes Yes Yes Yes

59 Change the multiplier for read_io 23 and 36 (1000
default value) 0 5.2.5 - Yes Yes Yes Yes

Sources 0 to 3 will return the value of the different Input/Output channels. Use the index to point to a
particular channel address.

Example: Read analog input channel #4 (AN4) value and save it in variable c

read_io 3,c,4;

Destination 0 allows you to change the value of the digital output channels. Use the index to point to a
particular channel address.

Example: Turn digital output channel 3 off (O3)

write_io 1,3,0;

Destination 2 allows you to change the value of analog input channels linked to a Modbus query.
Calling write_io will force a Modbus write command.

Destination 3 will support the same values the source linked to that channels supports (physical counters
or Modbus querys with 2 registers length)

Sources 23 and 36 will convert Modbus 32bit floating point queries linked to pulse channels to integer
values.

Channels memory

read_io /
write_io Description Index GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

305 Channels memory 0 - - 1.9 2.8 Si Si

This volatile memory area with 100 positions can be used a Source for all the I/O channels.

It can accesed using read_io/write_io 305

This allows the user to free script variables used to map data on the I/O channels.

Read direct Modbus query value

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

270 Get direct Modbus Query - value 1 to 100 - - 1.8 - Yes -
271 Get direct Modbus Query - state 1 to 100 - - 1.8 - Yes -

Sources 270 y 271 can be used to get the Modbus Query result (value and state) without the need of
mapping it in a channel.

Source 271 will return 0 if the master is not able to get the value from the slave, or 1 if it can.

Example: Get the value from Modbus query 4 and save it in variable c

read_io 270,c,4;

Real time clock reading

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

7 Current time (seconds since 1/1/2000) 0 Yes Yes Yes Yes Yes Yes

write_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

7 Set real time clock (seconds since 1/1/2000) 0 - - 1.8 2.6 Yes Yes

Source 7 will read the current date and time of the real time clock. This number can be converted to a
friendly format using the convertion functions.

Example: Get the current month and store in the variable g

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

26 / 32

read_io 7,e,0;
month g,e;

Non-volatile memory access

For numbers

read_io /
write_io Description Index GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

21 Numbers non-volatile memory 1 a 20 5.1.1 Yes Yes Yes Yes Yes

The source/destination 21 will allow you to read and write numbers from and into the non-volatile memory

In devices with firmware version 5.1.1 do not invoke this function permanently, only when you need to
change the value (the non-volatile memory can be damage)

Example: Read the number stored in position 15 of the non-volatile memory and store it in the variable g

read_io 21,g,15;

For strings

read_str
/

write_str
Descripción GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

121 a 125 Strings non-volatile memory 1 to 5 5.2.2 Yes Yes Yes Yes Yes

Sources/Destinations 121 to 125 will allow read and write up to 5 strings from/into the non-volatile
memory

Example: Write the string 'hello' into the 3rd position of the strings non-volatile memory

write_str 123,'hello';

Read GSM/GPRS/MW state and MW link configuration

State read

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

9 GSM link state (see table below) 0 Yes - Yes - Yes -
10 GPRS link state (see table below) 0 Yes - Yes - Yes -
11 Middleware link state (see table below) 0 Yes Yes Yes Yes - -

280 Roamming state (0=no, 1=yes) 0 - - 1.8 - Yes -

Sources 9,10,11 and 280 can be used to read the GSM, GPRS and MW link state. Below you'll find the
possible values for each one.

GSM state (GRD only)

GSM state
0 OFF
1 ATTACHING
2 SIM NOT INSERTED
3 PIN REQUIERED
4 PIN ERROR
5 PIN OK
6 BLOQUED
7 LOW SIGNAL
8 ACCESS DENIED
9 READY

GPRS state (GRD only)

GPRS state
0 OFF
1 WAIT GSM READY
2 ATTACHING
3 CONNECTED
4 ERROR

5 WAIT
RECONNECTION

Middleware state

Middleware state
0 OFF
1 WAIT GPRS READY
2 -
3 CONNECTION REFUSED
4 CONNECTION FAILED
5 HOST UNREACHABLE
6 HOST CLOSED CONNECTION
7 CONNECTED
8 ERROR
9 WAIT RECONNECTION
10 DNS FAILURE
11 LOGGING IN (Only GRD 5.1.2)

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

27 / 32

Middleware link configuration

read_io /
write_io Description Index GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

22 MW link enabled configuration 0 5.2.2 Yes Yes Yes - -

Source/Destination 22 will allow you to enable/disable the MW link configuration.

Have in mind that this setting is stored in the device's configuration and that once the device is
disconnected from the MW you won't be able to configure it remotely. If you are working with the GRD
you can recover the link by using SMS commands.

Stop sending historical records to the Middleware

read_io /
write_io Description Index GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

48 Disable sending historical records to the MW (1
disabled, 0 enabled) 0 5.2.0 Yes Yes Yes - -

Source/Destination 48 will allow you to disable/enable the device sending historical records to the MW.

Have in mind that this setting is stored in the device's configuration. If you want the device to send
records again to the MW you must enable this feature again.

This feature is useful if you are planning to read the historical records using and alternative method.

Example: Disable the device sending historical records to the MW.

write_io 48,0,1;;

Receiving/Sending SMS. Phonebook (GRD only)

Receiving

read_str Description GRD-XF-
2G

GRD-XF-
3G GRD-MQ

4 SMS text Yes Yes Yes
5 SMS sender's phone number Yes Yes Yes

Sources 4 and 5 can be used to receive SMS. To check if there's an incoming SMS read source 4 until
the length is greater than 0.

Example: Check if there's and incoming SMS

if 1 {
 read_str 4,a,v;
 read_str 5,b,w;
};
if a!0 {
 #Incomming SMS;
};

Sending

write_str Description GRD-XF-
2G

GRD-XF-
3G GRD-MQ

4 SMS text (send order) Yes Yes Yes
5 SMS recipient's phone number Yes Yes Yes

Destinations 4 and 5 can be used to send SMS. First write the recipients phone number on destination 5.
Then write the text to send on destination 4.

If you want to answer and incoming SMS you can write the text on destination 4 without writing the phone
number,

Example: Send an SMS

 write_str 5,'1166041241'; #Writes the recipients phone number;
 write_str 4,'Hello'; #Writes the text and sends the SMS;

read_io Description GRD-XF-
2G

GRD-XF-
3G GRD-MQ

39 SMS pending to be sent 5.2.4 Yes Yes

Phonebook

read_str Description GRD-XF-
2G

GRD-XF-
3G GRD-MQ

101 a 108 Phone book names 1 to 8 5.1.3 Yes Yes
111 a 118 Phone book telephone number 1 to 8 5.1.3 Yes Yes

Sources 101 to 108 will allow you to read the names on the GRDs phonebook

Sources 111 to 118 will allow you to read the phone numbers on the GRDs phonebook

These sources are useful if you want to edit an SMS recipient without having to edit the script but editing
the GRD configuration only.

Example: Read phone number #5 on the phonebook and store it in variable v

read_str 115,a,v;

Sending/Receiving messages to the Script Programmer
("Traces")

read_str cLAN-XF cLAN-XF

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

28 / 32

/
write_str

Description GRD-XF-2G cLAN-XF
V1 GRD-XF-3G cLAN-XF

V2 GRD-MQ cLAN-MQ

35 Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes

Destination 35 will allow you to send messages that will be displayed on the Script Programmer's "Trace"
window (available since Script Programmer V2.0).

There is a consideration about the underscore and spaces character. The space character will be
replaced by the underscore character before reading with read_str 35 . The underscore character will be
replaced by the space character after sending with write_str 35 .

If the Script Programmer is not connected to the device the text will be lost but will not affect the script
performance.

Serial port in text mode

read_str
/ write_io Description GRD-XF-

2G
cLAN-XF

V1
GRD-XF-

3G
cLAN-XF

V2 GRD-MQ cLAN-MQ

6 Serial port Yes Yes Yes Yes Yes Yes

Source/Destination 6 allows you sending and receiving strings to and from the serial port. To check if
data has arrived to the serial port read source 6 until lenght is larger than 0

To send strings just write to destination 6

For this feature to work properly you must configure the serial port in "Script" mode

To send binary characters use the $ operator.

Example: Send an echo of the strings received on the serial port.

read_str 6,a,v;
if a!0 {
 write_str 6,v;
};

Serial port in binary mode

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

37 Number of bytes stored in serial port buffer
(to delete these bytes use write_io 37) 0 5.2.0 Yes Yes Yes Yes Yes

38 Binary value of one byte of the serial port
buffer 1 to 100 5.2.0 Yes Yes Yes Yes Yes

write_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

37
Delete N bytes from the serial port buffer
(use together with read_io 37 and read_io
38)

0 5.2.0 Yes Yes Yes Yes Yes

38 Send a byte to the serial port (Binary value) 0 5.2.5 - Yes Yes Yes Yes

Source/Destination 37 and Source 38 allow you to get and parse binary data received at the serial port.

For this feature to work properly you must configure the serial port in "Script" mode

To send binary characters use write_str 6 and the $ operator.

Example: Wait until receiving 3 or more characters. Check if the third one is binary 126. Delete 3 bytes
from the seriel port buffer.

read_io 37,a,0;
if a>2 {
 read_io 38,b,3;
 if b=126 {
 #The third byte is binary 126;
 };
 write_io 37,0,3;
};

Creating historical records

write_io Description Index GRD-XF-2G cLAN-XF
V1 GRD-XF-3G cLAN-XF

V2
GRD-
MQ cLAN-MQ

56 Create a digital input channel "by change" historical
record 1 to 100 5.2.2 Yes 1.6 Yes Yes Yes

57 Create a digital output channel "by change" historical
record 1 to 100 5.2.2 Yes 1.6 Yes Yes Yes

12 Create an analog input channel "by time" historical record 1 to 100 Yes Yes Yes Yes Yes Yes

14 Create an analog input channel "by alarm" maximum value
historical record 1 to 100 Yes Yes Yes Yes Yes Yes

15 Create an analog input channel "by alarm" minimum value
historical record 1 to 100 Yes Yes Yes Yes Yes Yes

16 Create an analog input channel "by alarm" normal value
historical record 1 to 100 Yes Yes Yes Yes Yes Yes

13 Create a pulse input channel "by time" historical record 1 to 100 Yes Yes Yes Yes Yes Yes

These destinations allow creating historical records from the script besides the regular historical records.
The value of the record must be loaded in the value field.

Use with care to avoid generating historical records constantly.

Example: Create a "by time" record for AN2 channel every 10 seconds with the value 457

check_timer t
{
 timer t,10000;
 write_io 12,2,457;
};

Force sending reports

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

29 / 32

write_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

17 Force a digital input (Ix) channel
report 1 to 100 Yes Yes Yes Yes Yes Yes

18 Force a digital output (Ox)
channel report 1 to 100 Yes Yes Yes Yes Yes Yes

19 Force an analog input (ANx)
channel report 1 to 100 Yes Yes Yes Yes Yes Yes

20 Force an pulse input (PIx)
channel report 1 to 100 Yes Yes Yes Yes Yes Yes

These destinations allow forcing sending reports from the script besides the regular reports. The
reported value will be the one current value of the channel. The value field will be ignored.

Use with care to avoid generating GPRS traffic constantly (GRD only)

Example: Force a report for AN3 channel with its current value every 10 seconds

check_timer t
{
 timer t,10000;
 write_io 19,3,0;
};

Historical records memory access

read_io Description Index GRD-XF-
2G cLAN-XF V1 GRD-XF-

3G cLAN-XF V2 GRD-MQ cLAN-MQ

8 Records in historical records memory 0 Yes Yes Yes Yes Yes Yes

61 Get historical record memory channel type,
use with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

62 Get historical record memory timestamp, use
with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

63 Get historical record memory historical type,
use with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

64 Get historical record memory channel
number, use with write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

65 Get historical record memory value, use with
write_io 60 0 5.2.2 Yes Yes Yes Yes Yes

write_io Description Index GRD-XF-
2G cLAN-XF V1 GRD-XF-

3G cLAN-XF V2 GRD-MQ cLAN-MQ

60 Read specific register from historical records
memory (use together with read_io 61 to 65) 0 5.2.2 Yes Yes Yes Yes Yes

66 Delete the first N registers from the historical
records memory - 5.2.2 Yes Yes Yes Yes Yes

These sources/destinations allow you to gain access to the historical records memory. The will be used
in applications where you need to send this records using an alternative way (not using the MW).

Before reading a register you must check how many records are in the memory using read_io 8. Then
you can invoke write_io 60 to read a particular register and read_io 61 to 65 to get the fields of the read
register.

Finally use write_io 66 to delete the read records.

Example: Read all the records and send them to Script Programmer traces window.

read_io 8,a,0;
if a>0
{
 write_io 60,0,1 ; #Reads first record in memory;
 read_io 61,b,0; #Loads in b the channel type;
 read_io 62,c,0; #Loads in c the timestamp;
 read_io 63,d,0; #Loads in d the historical type;
 read_io 64,e,0; #Loads in e the channel type;
 read_io 65,f,0; #Loads in f the value;
 w=b,'-',b,'-',c,'-',d,'-',e,'-',f,$13,$10;
 write_str 35,w; #Sends the record to the traces window;
 write_io 66,0,1; #Deletes the first record in memory;
};

Satellite Modem

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

55 Satellite modem state 0 5.2.2 Yes Yes Yes - -

Send state

-7 Not sending while
connected to the MW

-6 Error while sending
records

-5 Initializing modem

-4
Serial port configuration
erro (Satellite modem
and 19200 bps)

-3 Historical records
memory empty

-2
Error while reading
historical records
memory

-1 Sending records
0 Ready to send

> 0 Records sent:

write_io Description Index GRD-XF-
2G

cLAN-
XF V1

GRD-XF-
3G cLAN-XF V2 GRD-MQ cLAN-MQ

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

30 / 32

54 Initiate sending historical records using
satellite modem 0 5.2.2 Yes Yes Yes - -

If you connect an SBD Iridium modem (EDGE/ITAS) to the GRD/cLAN serial port, you can send
historical records to the MW using the Iridium satellite network. Read the device user's manual for more
details.

Please check the satellite modem costs before using it.

Destination 54 initiates the device to send historical records in its memory using the satellite modem. The
modem must be "ready to send" to start doing it. The GRD/cLAN will send all the records it can on a
single satellite message.

Please check the satellite.sce example that you can download from here
www.exemys.com/GRDscriptsExamples

FTP Client

read_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

47 FTP client state 0 5.2.2 Yes - Yes - Yes

Estado de cliente
FTP

0 IDLE
2 CONNECTING
3 CONNECTION FAIL
7 ERROR
8 SENDING FILE

9 WAIT READY TO
SEND

10 READY TO SEND

write_io Description Index GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

44 Initiate FTP client connection 0 5.2.2 Yes - Yes - Yes
46 Finish FTP client connection 0 5.2.2 Yes - Yes - Yes

write_str Description GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

40 Load FTP Client URL 5.2.2 Yes - Yes - Yes
41 Load FTP Client use 5.2.2 Yes - Yes - Yes
42 Load FTP Client password 5.2.2 Yes - Yes - Yes
43 Load FTP Client file name 5.2.2 Yes - Yes - Yes
45 Load FTP file text line and send 5.2.2 Yes - Yes - Yes

These sources/destinations allow you to implement and FTP client to upload text files into an FTP
server. You will usually use this feature to send the historical records in text format.

To send data using the FTP client the GRD must be attached to the GPRS network (GRD only)

Please check the ftp.sce example that you can download from here
www.exemys.com/GRDscriptsExamples

CRC and checksums calculation

write_str Description GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

50 Process buffer (use together with read_str
51) 5.2.0 Yes Yes Yes Yes Yes

Use this destination to load the process buffer with a string

NMEA protocol

read_str Description GRD-XF-
2G

cLAN-XF
V1

GRD-XF-
3G

cLAN-XF
V2 GRD-MQ cLAN-MQ

51
Reads process buffer adding NMEA start,
end and checksum bytes (load process
buffer with write_str 50 before using it)

5.2.0 Yes Yes Yes Yes Yes

Source 51 will load the NMEA sentences previously loaded in the process buffer, adding the start/end
characters and the NMEA checksum.

Use this source to implement an NMEA talker

Example: Send NMEA sentence GPMWV,145.8,R,87.2,K,A to the serial port after adding the start/end
characters and the NMEA checksum.

write_str 50,'GPMWV,145.8,R,87.2,K,A';
read_str 51,a,w;
write_str 6,w;

MQTT Link state and publish (GRD-MQ and cLAN-MQ)
read_io Description Index GRD-MQ cLAN-MQ

1001 MQTT-Broker link state (1=connected) 0 Yes Yes

You can publish MQTT messages from the script

write_str Descripción GRD-MQ cLAN-MQ
1001 MQTT-Load topic to publish Yes Yes
1002 MQTT-Load payload to publish and begin publishing Yes Yes

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

31 / 32

Example:

read_io 1001,h,0;

if h=1 {

 write_str 1001,'v1/devices/me/telemetry';

 write_str 1002,'{A1:52}';

};

MQTT subscription messages reception (GRD-MQ and cLAN-
MQ)
You can get the messages linked to the topics subscribed using the GRD config software

It's possible to subscribe up to 10 topics.

Received messages are queued an must be read one by one.

read_io Descripción Indice GRD-MQ cLAN-MQ
1000 MQTT-Messages pending to be read 0 Yes Yes

read_str Descripción GRD-MQ cLAN-MQ
1000 MQTT. Get first message in queue. Yes Yes

Example:

read_io 1000,b,0; b

if b!0 {

 read_str 1000,c,z;

};

z will hold the payload

2020-11-26

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

32 / 32

	Introduction
	Script Programmer
	Language
	Variables
	Arithmetic operators
	Program structure
	Flow control functions
	Interface functions
	String functions
	Conversion functions
	Mathematical and logic functions
	Timming functions

	Sources-Destinations
	�read_io� sources
	�write_io� destinations
	�read_str� sources
	�write_str� destinations
	Read/Write Input/Output channels
	Channels memory
	Read direct Modbus query value
	Real time clock reading
	Non-volatile memory access
	Read GSM/GPRS/MW state and MW link configuration
	Receiving/Sending SMS. Phonebook.
	Sending/Receiving messages to the Script Programmer ("Traces")
	Serial port in text mode
	Serial port in binary mode
	Creating historical records
	Force sending reports
	Historical records memory access
	Satellite Modem
	FTP Client
	CRC and checksums calculation
	MQTT Link state and publish (GRD-MQ and cLAN-MQ)
	MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

