Indice

L O AU O e 1
SO Dt PO G A O oo eeeee oo 2
L ANGQUAGE oo e ee oo 14
VAMADIES ...ttt e e et ettt e e e e e ee e e et et e e e e e eeeeeeee st ee e e eeeseeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeesseeeeenes 14
AFTNMEBLIC OPEIAIOIS ...ttt et ettt e e et et e et e e eeeee e ee e e se e s eeeseeeaeeeeeseeseessseeneeeen 14
PrOGram SHIUCLUIE ...ttt e et e et e e e ee e eeeee e ss s e seeesennaees 14
FIOW CONEIOI FUNCLIONS ...ttt ettt e et e e s ee s ee e s et s e eeeeesee e ee e et ee e seeneseeeeseeneseesesenneeeesanes 14
INEEITACE TUNCLIONS ...ttt ettt e et e e s st ee e s e ee e ee et ee s eeseeseeseeeeneseeeeseaneseeseseneseeesanes
STNG FUNCHONS ... e e eeee e e e eeee e e seeaeeeaes e enseseean
Conversion functions
Mathematical and [0GIC FUNCHIONS ... 14
TIMMUNG TUNCLIONS ... e e e eeee e seeeseaee e ens e 14
SOUMCES-D S N ONS oo 24
FEAA_IO SOUICES ..o oo eee oo eeeee e eee oo eeeee e eeeeee e 24
WIIEE 1O AESHINALIONS ...ttt ettt ettt e e e et e et e e e eseeeeeeeeeeee e s e e s eeeeeseeeeeeeeeessseeeeenes 24
FEAA_ ST SOUICES ..o oo oo eeee oo eee e eeee e eeeeeee e eeeeee oo 24
WG SIr AESUNALIONS ...ttt et ettt ee e ettt e e e ee et e e et e e e eeeeeseeeeeeeneeseeeseeseeene 24
Read/Write INPUL/OULPUL CRANNELS ..ottt ee e e e e e e e eee e eese st seneeseseeneeeenanes 24
CRENNEIS MEIMOIY ... e e e e e eeee e ee e e ease e se e seeessneean 24
Read direCt MOODUS QUETY VAIUEooooo oo eeeeee e 24
Real tiIMe CIOCK FEAAING ...ttt et ese e e e se s eenees
Non-volatile memory access
Read GSM/GPRS/MW state and MW link configuration ..o 24
Receiving/Sending SMS. PRONEDOOK. ...ttt eeee e e eeeeee e eeeeeee e ese s eeeseseser s eseneene 24
Sending/Receiving messages to the Script Programmer ("Traces") ... 24
SEIIAl POIT N TEXE MOAE ...ttt et s e e e et e e et e s ee e e e e et e ee s esene e sesenesse s eeenensesenenn 24
Serial POrt iN DINAIY MOGE ... e ee e se e seene oo 24
Creating NISTOMCAI FECOIAS ...ttt oottt ettt et e et e et es et et et et st et eeseeeens 24
FOICE SENAING FEPOIS ... eeeeeeeee oo eeee oo eeee oo eeeee e eeeeeee e eeeee e 24
HiStOrICAl FECOMAS MEMOIY BCCESSooooo oo eeeeee oo eeeee e eeeeeee oo 24
S T= 1 C= T 1L G, oo 1Y o o OO PO 24
o 1= S 24
CRC and cheCKSUMS CAICUIBtIONoooooo oo 24
MQTT Link state and publish (GRD-MQ and CLAN-MQ)cccccoerroooereeoeeseccesesseessseeessseeesseeees s 24
MQTT subscription messages reception (GRD-MQ and cLAN-MQ) ... 24

CIENCE E3E
EATIE Eoe

|
Your Automation Partner E =

SCIGATE AUTOMATION (S) PTE LTD

No 1 Bukit Batok Street 22 #01-01 Singapore 659592
Tel: (65) 6561 0488 Fax: (65) 6561 0588
Email: sales@scigate.com.sg Web: https://scigate.com.sg/

Business Hours: Monday - Friday 8:30AM - 6:15PM

GRD - Script Programming Introduction

Script Programming
Description

The GRD/cLAN with script programming support allows you to run user written scripts on the device,
making it more powerful and flexible.

The GRD/cLAN will continue working normally while the script is running.

Script Features

» Math operations

* Logic operations

* Timing functions

* Physical and Modbus channels readings

* Digital outputs control

* SMS sending and receiving (GRD only)

» Serial port data parsing

* Sending and receiving data using external Satellite modem

Script

P

1/0 I/0
. 1

ial

|ﬁ seri
Port '

’

-i a |- - E;hn!;

SMS P - '

Cinish Witk o,w, ' 69°) Bee fija sl @
af g9
i

' awite ate 5,9 Karga ol awwco [
o e base
Data N
base
|Sate|lite

2017-06-14

1/32

GRD - Script Programming Script Programmer

Introduction

This software is used to write, compile and download the user' scripts to the GRD/cLAN. Before using it
please check that the GRDconfig software is able to talk to the device.

Software description

& Script Programmer, @ |:||§||g|
File Edit Project Transfer Help
[TE W |r‘ﬁ | Foll2 || © Disconnecked

odesize: 0 | Device: - i Errc-r in cade: - i'
Connecting to the device

There are two ways to connect the GRDconfig to the device. Locally (By USB on the GRD, by
LAN/Ethernet on the cLAN) and remotely (through the Middleware)

Connecting to the device - GRD by USB
The USB driver must be installed on order to do it using the USB port.

Open the "Project"menu, option "Properties” and choose "GRD" on the "Device" tab.

2/32

GRD - Script Programming

Script Programmer

-

"

™ Script Programmer

D B | B S|

File Edit |Project| Transfer Help

RE=N | Verify Ctrl+B

Watch variables

Properties

Trace Window Ctrl+T

Disconnected

'd

8 Properties

BT

 Device! Communication | Script | Transfer|

Devi{' " [GRD

)

Code size: 0 |Device: =

|Err0r in code: -

The choose the "Communication™ tab, choose USB and press accept

r

™ Properties

==

| Device | Communication | Seript | Transfer|

‘ Method{ USB.

=)

L

Then go to the “Transfer” menu and click “Connect”.

Script Programmer,

FEEEX

File Edit Project BEER=i=g Help

D = ' B Download bo Device

=

Disconnecked

Uplaad From Device

Connect

3/32

GRD - Script Programming Script Programmer

Connecting to the device - cLAN by LAN/Ethernet

The cLAN must be connected to the same network of your computer. Check that it has a valid IP address
as described later on these manual.

Open then "Project” menu, opion "Properties”, and choose "cLAN" on the "Device" tab

™ Script Programmer l<“> | “ = ||§| \ﬂj
File Edit [Project| Transfer Help

DE R Verify Ctrl+B (| (7] Disconnected
Trace Window Ctri+T |
Watchvariables 4

-

Properties
S ———®

(*® Properties @ M1

 Device’| Communication | Scriptl Transferl

Deui.(| CLAN - | ’

Code size: 0 |Device: cLaN [Error in code: -
L =

Choose "LAN/Ethernet" on the "Communication” tab and press Accept

(™ Properties ﬁ]

| Device|: Communication | Seript | Transfer|

(Method; LAN/Ethermnet | '
| |

W ey

Go to the “Transfer” menu and click “Connect”’

432

GRD - Script Programming Script Programmer

Script Programmer. @ |:| |E| E|

File Edit Project BIEREES Help

L |-— EJ I'E _*_ > B 0 Disconnected

After doing it you will see a list with the cLANs connected to your network. Choose the one you want to
configure.

You will be asked to type a password. It's the same password the cLAN will use to establish a connection
to the MW.

Password @ w

Connecting to the device - cLAN-XF / GRD-XF remotely (XF models onl
The device must be connected to the MW to configure it remotely.
The Middleware version must be 4.2.0 or higher to support scripts download/upload.

If you are going to use the Middleware you must set up the MW's IP address/URL, port, user and
password for remote configuration. To do it, go to the "Project™" menu, then to "Properties™, select the
"Communication" tab and choose "Middleware" on the "Method" combo box.

5/32

GRD - Script Programming Script Programmer

L Scr'.p.t P oEragen

Help
Chrl+B

-
v
|
®

Disconnected

% Properties

Dewvice | Communication | Seript | Transfer |

Method: |Middleware w |

IPIURL: |m2m.exemys.com

Puark: 43000
Password; [ssseesss |

ode size: O pevice: GRD Frror in code: -

Then click on the connect button at any time.

Script Programmer,

File Edit Project Transfer Help

Nem & |[#F&] 2
Conneck

[

P E @

Then you will have to click on the device that you want to configure.
MW Connection |E|

Select a device: £2

—)

(X

Script Versions 1 and 2

6/32

GRD - Script Programming Script Programmer

In the menu "Project”, option "Properties”, tab "Script" you can chose between script versions 1 and
2.

GRD-2G and cLAN V1.x use version 1. GRD-3G y cLAN V2.0+ use version 2.

Version 2 doubles the variables quantity, it allows upper and lower case variables. Version 1 only allows
lower case variables.

(™8 Properties @@1

| Device I Communication | Sﬂ'iDt§| Transfer|

Version: Ll ..j
2

e A

The choosen version will be use in two situations. While verifyng the script or before sending it to the
device.

If the script version is not compatible with the device you will see this error message.

ERROR [

Script version mismatch, Device script version 1

Upload/Download Script

Once the link is established you can send or received scripts. Before downloading a new script it will be
checked.

Script Programmer, @ |Z||E|El

File Edit Project Transfer Help =
OEd # # |22)»E | @

read io 37,a,0; # a=seria1_u§eﬁi'):

if =0
write str 35, 'Data ',a,' arrived',$13,510;
read io 38,b,0; # b=serie[0];
if h=2E5 !

Editing scripts

To write a script you must type the code on the edition text area. Contextual help will be displayed on
some functions. .

7132

GRD - Script Programming Script Programmer

#° Script Programmer @ |Z| |§| |X|

File

Edit Project Tramsfer Help

NEd % & 22 2 P E @

start

read io

read_io channel_type,var_num,channel_num
0-Digital I0 ~
1-Digital CUT |
Z-Analog M

3-Pulse Input =
?_Tlme Stamp _
5-Quantity of Records L

9-35M State
10-GPRS State L

To check if there are errors on the code you can press the “Verify” anytime.

Script Programmer

File Edit Project Transfer Help

DE R %] #& 22 rE @

start

{
read io 0,b,1;

1.

If the software detects an error it will mark it with a red square and will show you the line on the bottom

On this

Sc

next example we can see a missing ";"

File Edit Project Transfer Help

ript Programmer E] |Z| |§| |z|

D Ed B » .# 3t 4 0 mz2m.exemys,cam: 43000 - ID:12

star

i

=

if b
{

read jo 0,a,1;

t

read jo O0,b,1;

=0

if a=1

{

h=1;

write str 5,'1136302469';
write str 4, 'Entrada 1 = ',a;

else
{
if a=0
i
h=0;
write str 5,'1136302469';
write str 4, 'Entrada 1 = ',a;
b:
b
end;
ode size; 773 pevice: GRD Frror incode: 513 - Unexpected character, Expected ;

8/32

GRD - Script Programming

Script Programmer

If no errors are found you will see the next pop-up window.
Message

<L

MNo errors found

X

Script Programmer.

{
read_iu 0,b,1:
b:
read io 0O,a,l;
if b=0
{
if a=1
i
h=1:
write str 5, '1136302469'; HC

write str 4, 'Entrada 1 = ', oGO CEIT AT ooy i &

File Edit Project Transfer Help —
e d B » & k4 F 4 Q mZm.exemsys, com:43000 - ID:12
start

) (NENNN NN RN NN NN
else
i
if a=0
{
b=0;
write_str 5,'1136302469 ' ;
write str 4, 'Entrada 1 = ',a;
b:
b:
end;
ode size! 774 [Device: GRD [Error in code: MOME

9/32

GRD - Script Programming Script Programmer

Script Programmer @ ._ E||'>_(|
File Edit Project Transfer Help
D = O &5 » # L2 3 3 0 2. exermys, com: 43000 - ID:12
start
{
read io 0,b,1;
b
read io 0,a,1;
if h=0
{
::f ank Message
h=1;
write =str 5,'1136302469'
write str 4, 'Entrada 1 =
b:
}
el=e
{
if a=0
i
h=0;
write str 5, '1136302469'; -
write:str 4,'Entrada 1 = ',a; :
b:
b:
end;
ode size! 774 pevice: GRD ,Error in code: NOMNE

Script debugging

The Script Programmer has two methods that will help you to debug your application. The GRD's
firmware must be 5.2.0 or higher to support these options.

Variable watch

This tool will let you check the numeric and string values. You will also be able to edit these values in run
time.

Once the GRD is connected to the "Project” menu, "Watch variables" option and then select
"Numeric" or "String"

10/ 32

GRD - Script Programming

Script Programmer

Script Programmer.

File Edit BE{EES Transfer Help

FELEX

B q Yerify Chr+E

kol 1

-

m2m.exemys, com: 43000 - 1012

T L1 *

Properties

©
&" Watch Numeric
Yariable Value
a 1]
b 0
C 1]
d 0
] 1]
f 0
q 0
h 0
i 0
] 0
k 0
1 0
m 1]
n i
o 1]
1] u]
q u]
r 1]
5 u]
4 0
u 1]
a v| ||j | Write

ode size: 0 pevice: -

,Error in code: -

Trace Window

This tool will display messages sent from the script in a pop-up window. You will also be able to send
texts to the script to simulate different working conditions.

Once the GRD is connected to the "Project” menu, "Trace Window "option

11/32

GRD - Script Programming

Script Programmer

Script Programmer.

File Edit BE{EES Transfer Help

Trace Window Chrl+T

FEELEX

m2m.exemys, com: 43000 - 1012

AT walnanis:

Properties

BB EEX

Hello

Auka Scrall

| Send

*Code size: 0

pevice: GRD

?Error in code: -

Script Compression

The script maximum size supported by the GRD is 20000 characters.

If this space is not enough for your application you can compress the script before sending it to the GRD.
This will remove all your comments on the code and the extra spaces and tabs.

If you want to keep these comments you have to save a copy of the script in your computer.

To enable the compression go to the "Project™ menu, "Properties" option, "Transfer" tab and check
the "Compressed Transfer" check box.

12/32

GRD - Script Programming

Script Programmer

Script Programmer.

File Edit BaisEes ansfer

Help

Trace Wwindow

‘Watch wariables

e t—lvlerﬁ—l ChrB

Chrl+T

»

m2m.exemys, com: 43000 - 1012

Properties

| Device || Cammunication || Scrip] TransFer§|

Compressed Transfer:

ode size: 0 pevice: GRD

Frror in code: NOMNE

2020-11-25

13/32

GRD - Script Programming Timming functions

Introduction

The Exemys script programming language runs in a loop. This means that it will run until the last program
line and start from the beginning again.

Loop functions are not avaible. So, the program flow can't be stopped or looped. It runs like a ladder
programin a PLC, but its syntaxis is similar to C language.

We suggest not only to read this manual but to read the examples to better understand how to write a
script. You can download the examples from here www.exemys.com/GRDscriptsExamples

Script using the SMS feature will only work on the GRD.

Script Versions 1 and 2

There are two version of the script. Version 2 doubles the variables quantity, it allows upper and lower
case variables. Version 1 only allows lower case variables.

GRD-2G and cLAN V1.x use version 1
GRD-3G and cLAN V2.0+ use version 2
All GRD-MQ and cLAN-MQ use version 2.

Variables

There are two variable types. Numeric variables and String variables.
It's not necesary to define variables.

In Version 1 there are 21 numeric variables, from “a” to “u”. And there are 5 string variables from “v”
to ftzl!.

In Version 2 there are 42 numeric variables, from “a” to “u” and from “A” to “U”’. And there are 10
string variables from “v” to “z” and from “V” to “Z”.

String variable's maximum length is 100 characters.

Numeric variables are signed integer type, and their value range goes from —2,147,483,648 to
2,147,483,647. If a math operation gives a result with decimals, it will be truncated to the integer part.

Initial value es 0 for numeric variables and empty for strings.

Numeric variables can be mapped into GRD's I/O channels to send reports or create historical records
based on its values.

Assigning a value to a variable:
o Numeric variables:
a = 652;
e String variables :
v = 'Hello world'

String concatenation:

To concatenate two or more strings use the comma operator.

14 /32

GRD - Script Programming

Timming functions

Example:
a = 20;
u = 'Temperature ';
v ="' °F';
w = u, a, v;

The result will be ' Temperature 20 °F'

Another way to do the same is:

w = 'Temperature ', a,' °F';

String concatenation can only be done on string variables value assignment and write_str function

Assigning ASCII values to a string variable:

To assign ASCII values use the $ operator. After the operator type the ASCII value on decimal notation.

ACII value zero is not allowed.
Example:

z = 'Hello world',$13,$10;

ASCII values assignment can only be done on string variables value assignment and write_str function

Arithmetic operators

Operator

Description

Assighment

Exponential

Bitwise Or

Bitwise And

+ (| >N

Addition

Subtraccion

*| 1

Multiplication

Division

%

Modulo

Example:

130;
a+5;

a
b

Result: b variable value is 135.

Program structure

15/32

GRD - Script Programming Timming functions

Al instruction must end with the “;” symbol.

The program runs in a loop. This means that it will run until the last program line and start from the
beginning again.

The script last instruction must be “end;”

On this example "a" variable will be incremented constantly. Its initial value is 0.

On-line comments:

If you wish to add a comment line you must use the “#*“. On-line comments must also en with the “;”
symbol.

Flow control functions

“start” function

It marks a block that will be executed only once. It must be written at the beginning of the script.

Syntax:

Example:
start
a = 10; #a initial value is 10;

a =a + 1; #a is incremented by 1 constantly;

“if-else” function

The script will decide the script execution flow based on condition. If the condition is true the code in the
block next to the "if" instruction will be executed. You can add also a code block that will be executed if
the condition is no true.

The condition operators are the following ones:

Operator| Description

= Equals to

! Not equal to
Greater

> than

< Less than

16 /32

GRD - Script Programming Timming functions

Syntax:
Single “if”:
if condition
{
}i
A “;” symbol is required to close the block.
"if-else”:

if condition

The®” is only requiered on the "else"” block.

“end” function

This function is used to mark the end of the program. When the interpreter finds this line it will jump to the
first line of the script.

Syntax:

end,

Interface functions

“read_io” funcion

With read_io you can get values from different sources like I/O channels, the real time clock, etc

The “source” is indicated with a number. Some sources will require an index number to point an address
inside that source.

The result of this function will be loaded in the indicated numeric variable.
Syntax:
read io source,numeric variable,index;

Available sources may change depending on the device where you are running the script and the script
version. New sources can be added in the future.
Browse "Sources-Destinations" section for the currently available ones.

“write_io” function

17132

GRD - Script Programming Timming functions

With write_io you can set values in different destinations, like digital output channels, pulse channels,
etc.

The “destination” is indicated with a number. Some destinations will require an index number to point
an address inside that destination.

The value to be written can be a number or a numeric variable.
Syntax:
write_io destination,index,value;

Available destinations may change depending on the device where you are running the script and the
script version. New destinations can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

“read_str” function

With read_str you can get incoming strings from different sources like the serial port or a SMS.
The “source” is indicated with a number.

The result of this function will be loaded in the indicated string and numeric variables. The numeric
variable will contain the string length. If the value is O it means that there isn't a new incoming string from
that source.

Syntax:
read str source,numeric variable,string variable;

Available sources may change depending on the device where you are running the script and the script
version. New sources can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

“write_str” function

With write_str you can send strings to different destinations, like an SMS or the serial port. The
“destination” is indicated with a number.

Syntax:
write str destination,string;.

Available destinations may change depending on the device where you are running the script and the
script version. New destinations can be added in the future.

Browse "Sources-Destinations" section for the currently available ones.

The string can be a variable string or a text typed between single quotes. This function support string
concatenation and including ASCII values.

String functions
“is_equal” function

Compares one string variables with a text (variable string or a text typed between single quotes). The

18/32

GRD - Script Programming Timming functions

numeric variable will contain the result, 1 if they are equal or 0 if they are different.
Syntax:

is_equal numeric variable,string variable,string;
Example:

v="'PUMP RUN';

is _equal c,v, 'PUMP RUN';

if c=1 {

ftexts are equal;

i
“finish_with” function

Compares the end of one string variables with a text (variable string or a text typed between single
quotes). The numeric variable will contain the result, 1 if they match or O if they don't.
Syntax:
finish with numeric variable,string variable,string;
Example:
v="'PUMP RUN';
finish with c¢,v,'RUN';
if c=1 {

#The string ends with 'RUN';
i

“begin_with” function
Compares the beginning of one string variables with a text (variable string or a text typed between single
quotes). The numeric variable will contain the result, 1 if they match or O if they don't.
Syntax:
begin with numeric variable,string variable,string;
Example:
v="PUMP RUN';
end with c¢,v,'RUN'/
if c=1 {

#The string ends with 'RUN';,
}i

“contains’ function

Determines if one string (fixed text or string variable) is contained by a string variable. The numeric
variable will contain the position where the string if found or 0 if its not contained.

Syntax:
contains numeric variable,string variable,string,

Example:

v="'PUMP RUN';
contains c¢,v,'MP';,

19/32

GRD - Script Programming

Timming functions

if c>0 {
#The variable v contains the text
}s

“upper” function

Converts all character is one string variable to uppercase.
Syntax:
upper string variable;

Example:

v="Turn ON';
upper v,/
#v equals 'TURN ON';,

“lower” function

Converts all character is one string variable to lowercase.
Syntax:

lower string variable;
Example:

v="'Turn ON';

upper v;
#v equals 'turn on';

“strlen” function

Gets the string length and stores it on a numeric variable.
Syntax:

strlen numeric variable,string variable;
Example:

v="'PUMP RUN';

strlen c,v;,
#c equals 8

“substr”’ function

Returns part of a string within the same string variable
Syntax:
substr start,end,string variable;
v="PUMP RUN';

substr 2,3,v;,
#v equals 'UMP';

Conversion functions

'MP'

7

20/32

GRD - Script Programming Timming functions

“point” function

Converts a numeric variable to string and places a decimal point on a fixed position.
Syntax:

point string variable,numeric variable,decimals;
Example:

c=123;

point v,c,1;
#v equals '12.3';

“aton’ function

Converts number inside a string variable to a numeric variable. It starts at the beginning of the string and
ends where it finds a non-numeric character or reaches the end of the string.

Syntax:
aton numeric variable,string variable;

Example:

v="'123 RPM';
aton c,v,
#c equals 123;

“day”,”month”,’year”,”hs”,”min”,”’sec” and “nday” functions

These functions will convert a time_stamp to day, month, year, hour, minute, seconds or day of the
week.

Current data/time can be read using read_io with source #7.
Syntax:
day day,timestamp;
month mont,timestamp;,
year year,timestamp;
hs hour,timestamp;
min minutes,timestamp;
sec seconds,timestamp;
nday dayoftheweek,timestamp;,
“nday” function will return the day of the week number starting with Sunday=0s.
Example:
read io 7,e,0; #Reads current time and date into e;
day f,e;
month g, e;

year h,e;
hs 1i,e;

21/32

GRD - Script Programming Timming functions

min j,e;
sec k,e;
#The current time and date is f£/g/h i:j:k;

Mathematical and logic functions
“neg” function

It will invert the value of a numeric variable bitwise.
Syntax:
neg result,initialvalue;

Example:

a=32323; #7E43h
neg b,a;

b equals 4294934972 (FFFF81BC);

“sqtr” function

Calculates the square root of a numeric variable. As numeric values are integers the fractional part will be
truncated. Multiply the number before calculation if you need higher precision.

Syntax:

sqrt result,initialvalue;
Example:

a=225;

sgrt b,a;
#b equals 15;

“scale” function

Scales a number using the two point form of the linear equation.

Syntax:
scale result,initialvalue,x0,x1,y0,y1;

Example: Scale a 4-20mA signal on input AN1 to a number between 0 and 500
read io 2,a,1; #a = AN1

scale c¢,a,400,2000,0,500;
#c equals scaled number

Timming functions
This functions will allow you to control the program flow using timers.
“timer” and “check_timer” function

Use "timer" to store on a numeric variable the time you want to wait (in milliseconds)

Use “check_timer” to check if the time has expired or not.

22 /32

GRD - Script Programming Timming functions

Syntax:
timer numeric variable,time in milliseconds;

check timer numeric variable

{

};

Once the time has expired the code inside the check_timer block will be executed. This code will be

executed on every program loop until the timer is loaded again. Typically you will be reloaded the timer
inside the check timer block.

Note: The timing functions are no recommend on applications where precision timing is required
because timers can have some dispersion.

2020-11-25

23/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

Introduction

Functions read_io, write_io, read_str and write_str can be used to gain access to additional features. On
this section the different sources and destinations per function are listed. Then they are grouped by
feature.

Sources/destinations list

“read_io” sources

Source Description index | CRDXF- o ANXF V1| GRD-XF36 | ANXF | GRDMQ | cLAN-MQ
0 Digital input channel (Ix) 1to 100 Yes Yes Yes Yes Yes Yes
1 Digital output channel (Ox) 1to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANx) 1to 100 Yes Yes Yes Yes Yes Yes
3 Pulse input channel (Plx) 110 100 Yes Yes Yes Yes Yes Yes
Pulse input channel mapped to Modbus query
23 reading Float 32 number. Returns the integer part 1to 100 512 Yes Yes Yes Yes Yes
of the value times 1000 (PIx)
Pulse input channel mapped to Modbus query
reading Float 32 number with bytes swapped.
36 Returns the integer part of the value times 1000 110100 520 Yes Yes Yes Yes Yes
(PIx)
305 ||Channels memory 0 - - 1.9 28 Yes Yes
7 Current time (seconds since 1/1/2000) 0 Yes Yes Yes Yes Yes Yes
8 Records in historical records memory 0 Yes Yes Yes Yes Yes Yes
9 GSM link state (see table below) 0 Yes - Yes - Yes -
10 GPRS link state (see table below) 0 Yes - Yes - Yes -
1 Middleware link state (see table below) 0 Yes Yes Yes Yes - -i
21 Numbers non-volatile memory (read) 1a20 5.1.1 Yes Yes Yes Yes Yes
22 MW link enabled configuration 0 522 Yes Yes Yes - -
Number of bytes stored in serial port buffer (to
37 delete these bytes use write_io 37) 0 520 Yes Yes Yes Yes Yes
38 Binary value of one byte of the serial port buffer 1to 100 5.2.0 Yes Yes Yes Yes Yes
39 SMS pending to be sent 0 524 Yes Yes Yes Yes -
48 D_isable sending historical records to the MW (1 0 520 Yes Yes Yes Yes Yes
disabled, 0 enabled)
47 FTP client state 0 52.2 Yes - Yes - Yes
55 Satellite modem state 0 522 Yes Yes Yes - -
61 th hl_stoncal record memory channel type, use with 0 522 Yes Yes Yes Yes Yes
\write_io 60
62 th hi§torica| record memory timestamp, use with 0 522 Yes Yes Yes Yes Yes
\write_io 60
63 G_et his._tori;al record memory historical type, use 0 522 Yes Yes Yes Yes Yes
with write_io 60
64 G}et hi;torigal record memory channel number, use 0 522 Yes Yes Yes Yes Yes
with write_io 60
65 th h|§toncal record memory value, use with 0 522 Yes Yes Yes Yes Yes
write_io 60
75 UDP socket reception state (1 = ready) 0 - - - 2.2 - Yes
76 |UDP socket transmition state (1 = ready) 0 - - - 22 - Yes
77 UDP socket binary read. Bytes received 0 - - - 2.2 - Yes
78 UDP socket binary read. Read position 0a 100 - - - 2.2 - Yes
81 HTTP client. Answer length 0 - - - 22 - Yes
82 |HTTPclient. State 0 - - - 2.2 - Yes
95 SMTP client. State 0 - - - 22 - Yes
195 |POP client. State 0 - - - 2.2 - Yes
270 ||Get direct Modbus query value 1to 100 - - 1.8 - Yes -
271 Get direct Modbus query state 1to 100 - - 1.8 - Yes -
280 ||[Roamming state (O=no, 1=yes) 0 - - 1.8 - Yes -
1000 ||MQT T-Messages pending to be read 0 - - - - Yes Yes
1001 ||[MQT T-Broker link state (1=connected) 0 - - - - Yes Yes
“write_io” destinations
Destinati Description Index GRD-XF-2G cLAN-XF V1 GRD-XF-3G cLAN-XF V2 GRD-MQ cLAN-MQ
1 Digital output channel (Ox) 1to 100 Yes Yes Yes Yes Yes Yes
2 /Analog input channel (ANx, Modbus only) 1to 100 513 Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1to 100 Yes Yes Yes Yes Yes Yes
305 Channels memory 0 - - 1.9 2.8 Yes Yes
7 Set real time clock (seconds since 1/1/2000) 0 - - 1.8 2.6 Yes Yes
56 rCeLe;t: a digital input channel "by change" historical 110100 522 Yes 16 Yes Yes Yes
57 ?e:;e;t; a digital output channel "by change" historical 10100 522 Yes 16 Yes Yes Yes
12 Create an analog input channel "by time" historical 10 100 Yes Yes Yes Yes Yes Yes
record
Create an analog input channel "by alarm" maximum
14 value historical record 1to 100 Yes Yes Yes Yes Yes Yes
15 Create an qnalog input channel "by alarm" minimum 110 100 Yes Yes Yes Yes Yes Yes
value historical record
16 C.reat.e an analog input channel "by alarm" normal value 110 100 Yes Yes Yes Yes Yes Yes
historical record
13 Create a pulse input channel "by time" historical record 1to 100 Yes Yes Yes Yes Yes Yes
17 Force a digital input (Ix) channel report 1to 100 Yes Yes Yes Yes Yes Yes
18 Force a digital output (Ox) channel report 1to 100 Yes Yes Yes Yes Yes Yes
19 Force an analog input (ANx) channel report 1to 100 Yes Yes Yes Yes Yes Yes

24132

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

20 Force an pulse input (PIx) channel report 1to 100 Yes Yes Yes Yes Yes Yes
21 Numbers non-volatile memory (write) 1a20 Yes Yes Yes Yes Yes Yes
22 MW link enabled configuration (0 o 1) 0 5.2.2 Yes Yes Yes - -
Disable sending historical records to the MW (1
48 disabled, 0 enabled) 0 522 Yes Yes Yes Yes Yes
Delete N bytes from the serial port buffer (use together
87 lwith read_io 37 and read_io 38) 0 520 Yes Yes Yes Yes Yes
38 Send a byte to the serial port (Binary value) 0 525 - Yes Yes Yes Yes
Read specific register from historical records memory B
60 (use together with read_io 61 to 65) 522 Yes Yes Yes Yes Yes
66 Delete the first N registers from the historical records R 522 Yes Yes Yes Yes Yes
memory
54 Initiate sending historical records using satellite modem 0 522 Yes Yes Yes - -
32 Satellite. Begin reception check. 0 - - 1.3 2.2 - -
59 \(I)af;sz;‘;e the multiplier for read_io 23 and 36 (1000 default 0 525 B Yes Yes Yes Yes
44 Initiate FTP client connection 0 522 Yes - Yes - Yes
46 Finish FTP client connection 0 5.2.2 Yes - Yes - Yes
UDP Client. Send N bytes previously stored on the ~ R R R
77 UDP buffer 0 22 Yes
78 UDP Client. Load UDP buffer 0a 100 - - - 22 - Yes
82 HTTP Client. Begin connection check 0 - - - 2.2 - Yes
195 PORP Client. Begin connection check 0 - - - 2.2 - Yes
“read_str” sources
Source Description GRD-XF-2G cLAN-XF V1 GRD-XF-3G cLAN-XF V2 GRD-MQ cLAN-MQ
4 SMS text Yes - Yes - Yes -
5 SMS sender's phone number Yes - Yes - Yes -
6 Serial port Yes Yes Yes Yes Yes Yes
32 ||Satellite. String received from MW's transparent port. - - 1.3 22 - -
35 ||Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes
Reads process buffer adding NMEA start, end and checksum
51 bytes (load process buffer with write_str 50 before using it) 520 Yes Yes Yes Yes Yes
77 |UDP Socket. Get last string received. - - - 22 - Yes
81 |HTTP Client.. Get last string received. - - - 22 - Yes
193 |POP client. Get sender’s email address. - - - 22 - Yes
194 |POP client. Get subject - - - 22 - Yes
195 |POP client. Get body. Load next message in queue. - - - 22 - Yes
110 gaa Phone book names 1 to 8 513 - Yes - Yes -
111 11 sa Phone book telephone number 1 to 8 51.3 - Yes - Yes -
112 2153 Strings non-volatile memory 1 to 5 (read) 522 Yes Yes Yes Yes Yes
1000 |MQTT. Get first message in queue. - - - - Yes Yes
“write_str” destinations
Destinati Description GRD-XF-2G | cLAN-XF V1 || GRD-XF-3G | cLAN-XF V2 || GRD-MQ | cLAN-MQ
4 SMS text (send order) Yes - Yes - Yes -
5 SMS recipient's phone number Yes - Yes - Yes -
6 Serial port Yes Yes Yes Yes Yes Yes
35 Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes
50 Process buffer (use together with read_str 51) 5.2.0 Yes Yes Yes Yes Yes
121 a 125 |Strings non-volatile memory 1 to 5 (write) 522 Yes Yes Yes Yes Yes
40 Load FTP Client URL 522 Yes - Yes - Yes
41 Load FTP Client use 522 Yes - Yes - Yes
42 Load FTP Client password 522 Yes - Yes - Yes
43 Load FTP Client file name 522 Yes - Yes - Yes
45 Load FTP file text line and send 522 Yes - Yes - Yes
75 UDP socket. Initialize socket and set listen port - - - 2.2 - Yes
76 UDP socket. Set remote IP address and port - - - 2.2 - Yes
77 UDP socket. Send string - - - 22 - Yes
80 HTTP client. Ser URL and port - - - 2.2 - Yes
84 HTTP client. Set path/file name - - - 2.8 - Yes
HTTP client. Set GET query string _ : : R
81 | x=1238yy=456..) 22 Yes
HTTP client. Set value to ‘data’ field on the GET
83 . . - - - - 22 - Yes
query string (altemative to write_str 81)
89 SMTP client. Set URL and port - - - 22 - Yes
90 SMTP client. Set sender's email address - - - 22 - Yes
91 SMTP client. Set user name - - - 22 - Yes
92 SMTP client. Set password - - - 2.2 - Yes
93 SMTP client. Set recipient's email address - - - 22 - Yes
94 SMTP client. Set subject - - - 22 - Yes
95 SMTP client. Set body and begin sending email - - - 22 - Yes
189 POP client. Set URL and port - - - 22 - Yes
191 PORP client. Set user name - - - 22 - Yes
192 PORP client. Set password - - - 22 - Yes
1001 MQT T-Load topic to publish - - - - Yes Yes

25/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

[1002 [MQTT-Load payload to publish and begin publishing || - I - | - I - | Yes | Yes |

Read/Write Input/Output channels

5 ety GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 26 V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
0 Digital input channel (Ix) 1to 100 Yes Yes Yes Yes Yes Yes
1 Digital output channel (Ox) 1to 100 Yes Yes Yes Yes Yes Yes
2 Analog input channel (ANXx) 1to 100 Yes Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1to 100 Yes Yes Yes Yes Yes Yes
Pulse input channel mapped to Modbus query
23 reading Float 32 number. Returns the integer part || 1 to 100 512 Yes Yes Yes Yes Yes
of the value times 1000 (PIx)
Pulse input channel mapped to Modbus query
reading Float 32 number with bytes swapped.
36 Returns the integer part of the value times 1000 110100 520 Yes Yes Yes Yes Yes
(PIx)
e . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write_io Description Index 26 V1 3G V2 ‘ GRD-MQ ‘ cLAN-MQ
1 Digital output channel (Ox) 1to 100 Yes Yes Yes Yes Yes Yes
2 /Analog input channel (ANx, Modbus only) 1to 100 5.1.3 Yes Yes Yes Yes Yes
3 Pulse input channel (PIx) 1to 100 Yes Yes Yes Yes Yes Yes
59 Change the multiplier for read_io 23 and 36 (1000 0 525 R Yes Yes Yes Yes
default value)
Sources 0 to 3 will return the value of the different Input/Output channels. Use the index to point to a
particular channel address.
Example: Read analog input channel #4 (AN4) value and save it in variable ¢
read_io 3,c,4;
Destination 0 allows you to change the value of the digital output channels. Use the index to point to a
particular channel address.
Example: Turn digital output channel 3 off (O3)
write_io 1,3,0;
Destination 2 allows you to change the value of analog input channels linked to a Modbus query.
Calling write_io will force a Modbus write command.
Destination 3 will support the same values the source linked to that channels supports (physical counters
or Modbus querys with 2 registers length)
Sources 23 and 36 will convert Modbus 32bit floating point queries linked to pulse channels to integer
values.
Channels memory
read_io/ . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
e Description Index 2G V21 3G V2 GRD-MQ |cLAN-MQ
305 ||Channels memory 0 - - 1.9 2.8 Si Si

This volatile memory area with 100 positions can be used a Source for all the I/O channels.
It can accesed using read_io/write_io 305

This allows the user to free script variables used to map data on the I/O channels.

Read direct Modbus query value

. ey GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 2G V21 ‘ 3G V2 GRD-MQ | cLAN-MQ
270 ||Get direct Modbus Query - value 1to 100 - - 1.8 - Yes -
271 Get direct Modbus Query - state 1to 100 - - 1.8 - Yes -

Sources 270 y 271 can be used to get the Modbus Query result (value and state) without the need of
mapping it in a channel.

Source 271 will return 0 if the master is not able to get the value from the slave, or 1 if it can.
Example: Get the value from Modbus query 4 and save it in variable ¢

read_io 270,c,4;

Real time clock reading

n G GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 26 V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
7 Current time (seconds since 1/1/2000) 0 Yes Yes Yes Yes Yes Yes
L _ GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write_io Description Index 2G V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
7 Set real time clock (seconds since 1/1/2000) 0 - - 1.8 26 Yes Yes

Source 7 will read the current date and time of the real time clock. This number can be converted to a
friendly format using the convertion functions.

Example: Get the current month and store in the variable g

26/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

read_io 7,e,0;
month g,e;

Non-volatile memory access

For numbers

read_io/ . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
ite, io Description Index 26 V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
21 Numbers non-volatile memory 1a20 5.1.1 Yes Yes Yes Yes Yes
The source/destination 21 will allow you to read and write numbers from and into the non-volatile memory
In devices with firmware version 5.1.1 do not invoke this function permanently, only when you need to
change the value (the non-volatile memory can be damage)
Example: Read the number stored in position 15 of the non-volatile memory and store it in the variable g
read_io 21,g,15;
For strings
e . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF | con o | ooy o
. [2G V1 3G V2
write_str
121 a 125||Strings non-volatile memory 1 to 5 522 Yes Yes Yes Yes Yes
Sources/Destinations 121 to 125 will allow read and write up to 5 strings from/into the non-volatile
memory
Example: Write the string 'hello’ into the 3rd position of the strings non-volatile memory
write_str 123, 'hello’;
Read GSM/GPRS/MW state and MW link configuration
State read
. . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 26 V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
9 GSM link state (see table below) 0 Yes - Yes - Yes -
10 GPRS link state (see table below) 0 Yes - Yes - Yes -
1 Middleware link state (see table below) 0 Yes Yes Yes Yes - -
280 ||[Roamming state (O=no, 1=yes) 0 - - 1.8 - Yes -

Sources 9,10,11 and 280 can be used to read the GSM, GPRS and MW link state. Below you'll find the
possible values for each one.

GSM state (GRD only)

GSM state
OFF
ATTACHING
SIM NOT INSERTED
PIN REQUIERED
PIN ERROR
PIN OK
BLOQUED
LOW SIGNAL
/ACCESS DENIED
READY

o|o|(N|o|o||h[|w|N]|=|o|#*

GPRS state (GRD only)

GPRS state
OFF
WAIT GSM READY
ATTACHING
CONNECTED
ERROR

WAIT
RECONNECTION

o [hw|N|=|o|

Middleware state

Middleware state

OFF
WAIT GPRS READY

CONNECTION REFUSED
CONNECTION FAILED

HOST UNREACHABLE

HOST CLOSED CONNECTION
CONNECTED

ERROR

WAIT RECONNECTION

DNS FAILURE

LOGGING IN (Only GRD 5.1.2)

olo|N|o|oa|(|h|w|N|=|o]F#*

e
I|o

27132

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

Middleware link configuration

read_io/ . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write_io Description Index 26 V21 ‘ 3G V2 GRD-MQ || cLAN-MQ
22 MW link enabled configuration 0 522 Yes Yes Yes - -

Source/Destination 22 will allow you to enable/disable the MW link configuration.
Have in mind that this setting is stored in the device's configuration and that once the device is

disconnected from the MW you won't be able to configure it remotely. If you are working with the GRD
you can recover the link by using SMS commands.

Stop sending historical records to the Middleware

read_io/ - GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write jo Description Index 2G V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
Disable sending historical records to the MW (1
48 |disabled, 0 enabled) 0 520 Yes Yes Yes - -

Source/Destination 48 will allow you to disable/enable the device sending historical records to the MW.

Have in mind that this setting is stored in the device's configuration. If you want the device to send
records again to the MW you must enable this feature again.

This feature is useful if you are planning to read the historical records using and alternative method.
Example: Disable the device sending historical records to the MW.

write_io 48,0,1;;

Receiving/Sending SMS. Phonebook (GRD only)

Receiving
N GRD-XF- | GRD-XF-
read_str Description 26 3G GRD-MQ ‘
4 SMS text Yes Yes Yes
5 SMS sender's phone number Yes Yes Yes

Sources 4 and 5 can be used to receive SMS. To check if there's an incoming SMS read source 4 until
the length is greater than 0.

Example: Check if there's and incoming SMS

if 1 {
read_str 4,a,v;
read_str 5,b,w;
bi
if al0 {
#Incomming SMS;
Yi

Sending
o . GRD-XF- | GRD-XF-
write_str Description 2G 3G GRD-MQ
SMS text (send order) Yes Yes Yes
5 SMS recipient's phone number Yes Yes Yes

Destinations 4 and 5 can be used to send SMS. First write the recipients phone number on destination 5.
Then write the text to send on destination 4.

If you want to answer and incoming SMS you can write the text on destination 4 without writing the phone
number,

Example: Send an SMS

write_str 5,'1166041241"'; #Writes the recipients phone number;
write_str 4,'Hello'; #Writes the text and sends the SMS;

. . GRD-XF- | GRD-XF-
read_io Description ‘ 2G 3G GRD-MQ ‘
39 SMS pending to be sent 524 Yes Yes
Phonebook
. GRD-XF- | GRD-XF-
read_str Description ‘ 2G 3G GRD-MQ ‘
101 a 108|Phone book names 1 to 8 5.1.3 Yes Yes
111 a 118][Phone book telephone number 1 to 8 5.1.3 Yes Yes

Sources 101 to 108 will allow you to read the names on the GRDs phonebook
Sources 111 to 118 will allow you to read the phone numbers on the GRDs phonebook

These sources are useful if you want to edit an SMS recipient without having to edit the script but editing
the GRD configuration only.

Example: Read phone number #5 on the phonebook and store it in variable v

read_str 115,a,v;

Sending/Receiving messages to the Script Programmer
("Traces")

[read_str | I e [I |

28/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

/ Description GRD-XF-2G| ““"7™"" |GRD-XF-3G| ““77>"" | GRD-MQ | cLAN-MQ
) \'Al V2

write_str
35 Script Programmer's trace window 5.2.0 Yes Yes Yes Yes Yes

Destination 35 will allow you to send messages that will be displayed on the Script Programmer's "Trace"
window (available since Script Programmer V2.0).

There is a consideration about the underscore and spaces character. The space character will be
replaced by the underscore character before reading with read_str 35. The underscore character will be
replaced by the space character after sending with write_str 35.

If the Script Programmer is not connected to the device the text will be lost but will not affect the script
performance.

Serial port in text mode

read_str . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
/write.io Description 26 V1 3G V2 GRD-MQ | cLAN-MQ
6 Serial port Yes Yes Yes Yes Yes Yes

Source/Destination 6 allows you sending and receiving strings to and from the serial port. To check if
data has arrived to the serial port read source 6 until lenght is larger than 0

To send strings just write to destination 6
For this feature to work properly you must configure the serial port in "Script" mode
To send binary characters use the $ operator.
Example: Send an echo of the strings received on the serial port.
read_str 6,a,v;
if alo {

write_str 6,v;

Yi

Serial port in binary mode

5 . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 2G VA 3G V2 GRD-MQ cLAN-MQ‘
Number of bytes stored in serial port buffer
87 (to delete these bytes use write_io 37) 0 520 Yes Yes Yes Yes Yes
38 S:f‘fzrry value of one byte of the serial port | 4 155 | 520 Yes Yes Yes Yes Yes
e . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write_io Description Index 2G V21 3G V2 GRD-MQ cLAN-MQ‘
Delete N bytes from the serial port buffer
37 (use together with read_io 37 and read_io 0 520 Yes Yes Yes Yes Yes
38)
38 Send a byte to the serial port (Binary value) 0 525 - Yes Yes Yes Yes

Source/Destination 37 and Source 38 allow you to get and parse binary data received at the serial port.
For this feature to work properly you must configure the serial port in "Script" mode
To send binary characters use write_str 6 and the $ operator.

Example: Wait until receiving 3 or more characters. Check if the third one is binary 126. Delete 3 bytes
from the seriel port buffer.

read_io 37,a,0;
if a>2 {
read_io 38,b,3;
if b=126 {
#The third byte is binary 126;
bi
write_io 37,0,3;
i

Creating historical records

write_io Description index |GRD-XF-26| SFANXF app xF.3g|CLANXF | GRD- |,)\ M
V1 V2 MQ

56 Create a digital input channel "by change" historical 110100 522 Yes 16 Yes Yes Yes
record

57 rCerCe(;art(;e a digital output channel "by change" historical 110100 522 Yes 16 Yes Yes Yes

12 Create an analog input channel "by time" historical record | 1 to 100 Yes Yes Yes Yes Yes Yes

14 Qreatg an analog input channel "by alarm" maximum value 110 100 Yes Yes Yes Yes Yes Yes
historical record

15 Qreatfe an analog input channel "by alarm" minimum value 110100 Yes Yes Yes Yes Yes Yes
historical record

16 C_reat_e an analog input channel "by alarm" normal value 10100 Yes Yes Yes Yes Yes Yes
historical record

13 Create a pulse input channel "by time" historical record 1to 100 Yes Yes Yes Yes Yes Yes

These destinations allow creating historical records from the script besides the regular historical records.
The value of the record must be loaded in the value field.

Use with care to avoid generating historical records constantly.

Example: Create a "by time" record for AN2 channel every 10 seconds with the value 457
check_timer t
! timer t,10000;

write_io 12,2,457;
i

Force sending reports

29/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

. Aty GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
write_io Description Index 26 V1 3G V2 GRD-MQ cLAN-MQ‘

17 Force a digital input (Ix) channel 1to 100 Yes Yes Yes Yes Yes Yes
report

18 Force a digital output (OX) 1to 100 Yes Yes Yes Yes Yes Yes
channel report

19 Force an analog input (ANX) 1to 100 Yes Yes Yes Yes Yes Yes
channel report

20 Force an pulse input (P1x) 1to 100 Yes Yes Yes Yes Yes Yes
channel report

These destinations allow forcing sending reports from the script besides the regular reports. The
reported value will be the one current value of the channel. The value field will be ignored.

Use with care to avoid generating GPRS traffic constantly (GRD only)

Example: Force a report for AN3 channel with its current value every 10 seconds
check_timer t
! timer t,10000;

write_io 19,3,0;

Iy

Historical records memory access

read_io Description Index GR,",’(';XF' CLAN-XF V1 GR;’(';XF' CcLAN-XF V2| GRD-MQ | cLAN-MQ
8 Records in historical records memory 0 Yes Yes Yes Yes Yes Yes
g1 | et historical record memory channel type, |, 522 Yes Yes Yes Yes Yes
use with write_io 60
g2 |6t historical record memory timestamp, use| o | 555 Yes Yes Yes Yes Yes
with write_io 60
63 Get hi_storic_al r_ecord memory historical type, 0 522 Yes Yes Yes Yes Yes
use with write_io 60
Get historical record memory channel
64 number, use with write_io 60 0 522 Yes Yes Yes Yes Yes
65 th h|§tor|cal record memory value, use with 0 522 Yes Yes Yes Yes Yes
write_io 60
write_io Description Index GR.B(;XF' cLAN-XF V1 GR_?(;XF' cLAN-XF V2 |GRD-MQ | cLAN-MQ
Read specific register from historical records
60 memory (use together with read_io 61 to 65) 0 522 Yes Yes Yes Yes Yes
66 Delete the first N registers from the historical R 522 Yes Yes Yes Yes Yes
records memory

These sources/destinations allow you to gain access to the historical records memory. The will be used
in applications where you need to send this records using an alternative way (not using the MW).

Before reading a register you must check how many records are in the memory using read_io 8. Then
you can invoke write_jo 60 to read a particular register and read_io 61 to 65 to get the fields of the read
register.

Finally use write_io 66 to delete the read records.

Example: Read all the records and send them to Script Programmer traces window.

read_io 8,a,0;

if a>0

{
write_io 60,0,1 ; #Reads first record in memory;
read_io 61,b,0; #Loads in b the channel type;
read_io 62,c,0; #Loads in c the timestamp;
read_io 63,d,0; #Loads in d the historical type;
read_io 64,e,0; #Loads in e the channel type;
read_io 65,f,0; #Loads in f the value;
w=b,'-"',b,'-",c,'-",d,"'-",e,"'-",£,$13,810;
write_str 35,w; #Sends the record to the traces window;
write_io 66,0,1; #Deletes the first record in memory;

Iy

Satellite Modem

. . GRD-XF- | cLAN-XF | GRD-XF- | cLAN-XF
read_io Description Index 2G V1 ‘ 3G V2 GRD-MQ | cLAN-MQ
55 Satellite modem state 0 522 Yes Yes Yes - -
Send state
7 Not sending while
connected to the MW
6 Error while sending
records
-5 Initializing modem
Serial port configuration
-4 erro (Satellite modem
and 19200 bps)
3 Historical records
memory empty
Error while reading
-2 historical records
memory
-1 Sending records
0 Ready to send
>0 Records sent:
o . GRD-XF-| cLAN- |GRD-XF-
H write_io Description ‘ Index 26 XE V1 ‘ 3G HcLAN-XF VZH GRD-MQ HcLAN-MQH

30/32

GRD - Script Programming MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

Initiate sending historical records using
satellite modem

[o foez|vee | veo | o | -] - |

If you connect an SBD Iridium modem (EDGE/ITAS) to the GRD/cLAN serial port, you can send
historical records to the MW using the Iridium satellite network. Read the device user's manual for more
details.

Please check the satellite modem costs before using it.

Destination 54 initiates the device to send historical records in its memory using the satellite modem. The
modem must be "ready to send" to start doing it. The GRD/cLAN will send all the records it can on a
single satellite message.

Please check the satellite.sce example that you can download from here
www.exemys.com/GRDscriptsExamples

FTP Client

FTP client state

-_

0 IDLE
2 CONNECTING
3 CONNECTION FAIL
7 ERROR
8
9

SENDING FILE

WAIT READY TO
SEND

10 READY TO SEND

44 Initiate FTP client connection 0 5.2.2 Yes - Yes - Yes
[46 |[Finish FTP client connection [o [522] Yes [- [Yes | - | Yes |

40 Load FTP Client URL 522 Yes - Yes - Yes
41 Load FTP Client use 522 Yes - Yes - Yes
42 Load FTP Client password 522 Yes - Yes - Yes
43 Load FTP Client file name 522 Yes - Yes - Yes
45 Load FTP file text line and send 522 Yes - Yes - Yes

These sources/destinations allow you to implement and FTP client to upload text files into an FTP
server. You will usually use this feature to send the historical records in text format.

To send data using the FTP client the GRD must be attached to the GPRS network (GRD only)

Please check the ftp.sce example that you can download from here
WWW.exX¢ X RDscriptsExampl

CRC and checksums calculation

-~
=

Process buffer (use together with read_str 520 Yes Yes Yes Yes Yes

Use this destination to load the process buffer with a string

NMEA protocol

Reads process buﬁer adding NMEA start,
51 end and checksum bytes (load process
buffer with write_str 50 before using it)

Source 51 will load the NMEA sentences previously loaded in the process buffer, adding the start/end
characters and the NMEA checksum.

Use this source to implement an NMEA talker

Example: Send NMEA sentence GPMWV,145.8,R,87.2,K,A to the serial port after adding the start/end
characters and the NMEA checksum.

write_str 50, 'GPMWV,145.8,R,87.2,K,A";
read_str 51,a,w;
write_str 6,w;

MQTT Link n lish (GRD-MQ and cLAN-M
[readio[~ Descripon ~[index| GRD-MQ [cLAN-MQ_
1001 |MQT T-Broker link state (1=connected) 0 Yes Yes

You can publish MQT T messages from the script

1001 |MQT T-Load topic to publish

[1002 [MQTT-Load payload to publish and begin publishing | Yes Yes

31/32

MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

GRD - Script Programming
Example:

read_io 1001,h,0;

if h=1 {

write_str 1001, 'vl/devices/me/telemetry';

write_str 1002, '{Al:52}";

bi

MQTT subscription messages reception (GRD-MQ and cLAN-

NQ)

You can get the messages linked to the topics subscribed using the GRD config software

It's possible to subscribe up to 10 topics.

Received messages are queued an must be read one by one.

read_io Descripcién GRD-MQ cLAN-MQ
1000 |MQT T-Messages pending to be read Yes Yes
read_str | Descripcién | GRD-mQ | cLAN-mMQ
1000 |MQTT. Get first message in queue. Yes Yes
Example:
read_io 1000,b,0; b
if blO |

read_str 1000,c,z;

Yi

z will hold the payload

2020-11-26

32/32

	Introduction
	Script Programmer
	Language
	Variables
	Arithmetic operators
	Program structure
	Flow control functions
	Interface functions
	String functions
	Conversion functions
	Mathematical and logic functions
	Timming functions

	Sources-Destinations
	�read_io� sources
	�write_io� destinations
	�read_str� sources
	�write_str� destinations
	Read/Write Input/Output channels
	Channels memory
	Read direct Modbus query value
	Real time clock reading
	Non-volatile memory access
	Read GSM/GPRS/MW state and MW link configuration
	Receiving/Sending SMS. Phonebook.
	Sending/Receiving messages to the Script Programmer ("Traces")
	Serial port in text mode
	Serial port in binary mode
	Creating historical records
	Force sending reports
	Historical records memory access
	Satellite Modem
	FTP Client
	CRC and checksums calculation
	MQTT Link state and publish (GRD-MQ and cLAN-MQ)
	MQTT subscription messages reception (GRD-MQ and cLAN-MQ)

